epsproc.geomFunc.mfblmGeom module¶

epsproc.geomFunc.mfblmGeom.mfblmXprod(matEin, QNs=None, EPRX=None, p=[0], BLMtable=None, lambdaTerm=None, RX=None, eulerAngs=None, thres=0.01, thresDims='Eke', selDims={'Type': 'L', 'it': 1}, sumDims=['mu', 'mup', 'l', 'lp', 'm', 'mp'], sumDimsPol=['P', 'R', 'Rp', 'p'], symSum=True, SFflag=False, squeeze=False, phaseConvention='E', basisReturn='BLM', verbose=1)[source]

Implement $$\beta_{LM}^{MF}$$ calculation as product of tensors.

$\begin{split}\begin{eqnarray} \beta_{L,-M}^{\mu_{i},\mu_{f}} & = & \sum_{l,m,\mu}\sum_{l',m',\mu'}(-1)^{(\mu'-\mu_{0})}{B_{L,-M}}\nonumber \\ & \times & \sum_{P,R',R}{E_{P-R}(\hat{e})\Lambda_{R',R}(R_{\hat{n}})}I_{l,m,\mu}^{p_{i}\mu_{i},p_{f}\mu_{f}}(E)I_{l',m',\mu'}^{p_{i}\mu_{i},p_{f}\mu_{f}*}(E) \end{eqnarray}\end{split}$

Where each component is defined by fns. in :py:module:epsproc.geomFunc.geomCalc module.

16/03/20 In progress! Dev code:

http://localhost:8888/lab/tree/dev/ePSproc/geometric_method_dev_Betas_090320.ipynb D:codeePSprocpython_devePSproc_MFBLM_Numba_dev_tests_120220.PY

TOTAL MESS AT THE MOMENT>>?>>>>?DFdas<>r ty

Parameters: phaseConvention (optional, str, default = 'S') – Set phase conventions with epsproc.geomCalc.setPhaseConventions(). To use preset phase conventions, pass existing dictionary.