# epsproc.geomFunc.afblmGeom_bk161020 module¶

epsproc.geomFunc.afblmGeom_bk161020.afblmXprod(matEin, QNs=None, AKQS=None, EPRX=None, p=[0], BLMtable=None, lambdaTerm=None, RX=None, eulerAngs=None, thres=0.01, thresDims='Eke', selDims={'Type': 'L', 'it': 1}, sumDims=['mu', 'mup', 'l', 'lp', 'm', 'mp', 'S-Rp'], sumDimsPol=['P', 'R', 'Rp', 'p'], symSum=True, SFflag=False, SFflagRenorm=False, BLMRenorm=1, squeeze=False, phaseConvention='E', basisReturn=False)[source]

Implement $$\beta_{LM}^{AF}$$ calculation as product of tensors.

$\begin{eqnarray} \beta_{L,-M}^{\mu_{i},\mu_{f}} & =(-1)^{M} & \sum_{P,R',R}{[P]^{\frac{1}{2}}}{E_{P-R}(\hat{e};\mu_{0})}\sum_{l,m,\mu}\sum_{l',m',\mu'}(-1)^{(\mu'-\mu_{0})}{\Lambda_{R'}(\mu,P,R')B_{L,-M}(l,l',m,m')}I_{l,m,\mu}^{p_{i}\mu_{i},p_{f}\mu_{f}}(E)I_{l',m',\mu'}^{p_{i}\mu_{i},p_{f}\mu_{f}*}(E)\sum_{K,Q,S}\Delta_{L,M}(K,Q,S)A_{Q,S}^{K}(t) \end{eqnarray}$

Where each component is defined by fns. in :py:module:epsproc.geomFunc.geomCalc module.

10/09/20 Verified (but messy) version, with updated defaults.

01/09/20 Verified (but messy) version, including correct renormalisation routines.

15/06/20 In progress! Using mfblmXprod() as template, with just modified lambda term, and new alignment term, to change.

Dev code:
geometric_method_dev_pt3_AFBLM_090620.ipynb http://localhost:8888/lab/tree/dev/ePSproc/geometric_method_dev_Betas_090320.ipynb D:codeePSprocpython_devePSproc_MFBLM_Numba_dev_tests_120220.PY

TOTAL MESS AT THE MOMENT>>?>>>>?DFdas<>r ty

Parameters: phaseConvention (optional, str, default = 'S') – Set phase conventions with epsproc.geomCalc.setPhaseConventions(). To use preset phase conventions, pass existing dictionary.

Notes

Cross-section outputs now set as:

• XSraw = direct AF calculation output.
• XSrescaled = XSraw * SF * sqrt(4pi)
• XSiso = direct sum over matrix elements

Where XSrescaled == XSiso == ePS GetCro output for isotropic distribution.